metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Long Dang,^a Yong-Qian Huo,^b Wei Wang^b and Jun Li^b*

^aShanxi Institute of Education, Xi'an, Shaanxi
710061, People's Republic of China, and
^bDepartment of Chemistry, Northwest
University, Xi'an, Shaanxi 710069, People's
Republic of China

Correspondence e-mail: junli@nwu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.014 Å R factor = 0.073 wR factor = 0.164 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua[bis(5-bromosalicylidene)ethylenediaminato]chloromanganese(III)

The title compound (systematic name: aqua{4,4'-dibromo-2,2'-[1,2-ethanediylbis(nitrilomethylidyne)]diphenolato]chloromanganese(III)), [Mn(C₁₆H₁₂Br₂N₂O₂)Cl(H₂O)] or [Mn(Br₂salen)Cl(H₂O)], was prepared from a methanol solution. The Mn³⁺ ion displays an elongated octahedral geometry, coordinated by two N and two O atoms from salen, one O atom from the water ligand and one Cl⁻ anion, and is slightly displaced out of the Schiff base N₂O₂ plane toward the axial Cl⁻ ion. Hydrogen bonds between the coordinated water O and Cl atoms link pairs of molecules into a threedimensional network.

Comment

There has been considerable attention focused on the study of manganese complexes in recent decades, because of their novel structures and applications in organic synthesis (Ruttinger & Dismukes, 1997; Manchanda et al., 1995). At the same time, manganese complexes have great significance in the oxygen-evolving complex (OEC) of photosystem II (PSII) (Pecoraro et al., 1994; Wieghardt, 1989). The Schiff base complexes of manganese are considered to be the simplest models for the reactivity of active sites of manganese catalases. A large number of manganese complexes with Schiff base ligands have been reported (Oki & Hodgson, 1990; Bermejo et al., 1996; Hulme et al., 1997; Watkinson et al., 1999; Asada et al., 2000; Li et al., 2000; Panja et al., 2003). We present here a new manganese-Br₂salen complex [Br₂salen is bis(5-bromosalicylidene)ethylenediaminate], (I), and describe its crystal structure.

In (I), the Mn³ ion is six-coordinate with four donor atoms of the Br₂salen ligand (two N and two O atoms) located in the equatorial plane of a slightly distorted octahedron. In addition, a Cl⁻ ion and a water molecule are bonded axially and occupy the fifth and sixth coordination positions (Fig. 1 and Table 1). The Mn atom is displaced out of the N₂O₂ Schiff base plane toward the axial Cl⁻ ion by 0.055 (13) Å. The Mn– O1W and Mn–Cl distances are consistent with the presence of a Jahn–Teller elongation of the coordination octahedron for a high-spin d⁴ Mn³⁺ ion in which the e_g electron occupies the d_{z^2} orbital. Received 4 January 2005 Accepted 11 January 2005 Online 22 January 2005

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Two molecules related by a crystallographic center of symmetry are linked together by two $O1W \cdots O2$ hydrogen bonds as well as two Br...Br interactions of length 3.844 (9) Å. Hydrogen bonds between O1W and Cl link pairs of molecules into a three-dimensional network (Fig. 2).

Experimental

5-Bromosalicylidene and ethylenediamine (2:1 ratio) were mixed in anhydrous ethanol. This solution was distilled and filtered, yielding bis(5-bromosalicylidene)ethylenediamine. MnCl₂ was obtained commercially from Across and was used without further purification. Crystals of (I) were grown from a methanol solution of the ligand and metal chloride via the following steps: a solution of the metal chloride (M) was dropped into a solution of the ligand (L) (ratio 1:1 M:L) with stirring. The brown solution was filtered and the filtrate was left to stand at room temperature. Brown crystals formed at the bottom of the flask after a few days. Elemental analysis results are completely in agreement with the structural composition of (I).

Crystal data

$\begin{bmatrix} Mn(C_{16}H_{12}Br_2N_2O_2)Cl(H_2O) \end{bmatrix}$ $M_r = 532.50$ Monoclinic, $P2_1/a$ a = 12.2994 (18) Å b = 11.6445 (17) Å c = 13.660 (2) Å $\beta = 113.909$ (2)° V = 1788.5 (5) Å ³	$D_x = 1.978 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 8335 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 5.37 \text{ mm}^{-1}$ T = 293 (2) K Block, brown
Z = 4	$0.3 \times 0.2 \times 0.1 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.280, T_{max} = 0.584$ 7093 measured reflections	3134 independent reflections 2766 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 25.0^{\circ}$ $h = -12 \rightarrow 14$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.164$ S = 1.19 3134 reflections 232 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0365P)^{2} + 25.603P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.16 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{o} = -1.32 \text{ e} \text{ Å}^{-3}$

Figure 2

A view of the packing of the title compound. Dashed lines indicate hydrogen bonds and Br...Br interactions.

Table 1 Selected geometric parameters (Å, $^{\circ}$).

Mn1-O1	1.875 (6)	Mn1-N2	1.985 (7)
Mn1-O2	1.875 (6)	Mn1 - O1W	2.274 (7)
Mn1-N1	1.978 (7)	Mn1-Cl1	2.587 (3)
O1 - Mn1 - O2	91.4 (3)	N1 - Mn1 - O1W	87.9 (3)
O1-Mn1-N1	92.7 (3)	N2-Mn1-O1W	83.6 (3)
O2-Mn1-N1	174.2 (3)	O1-Mn1-Cl1	96.2 (2)
O1-Mn1-N2	174.5 (3)	O2-Mn1-Cl1	95.33 (19)
O2-Mn1-N2	92.6 (3)	N1-Mn1-Cl1	88.3 (2)
N1 - Mn1 - N2	83.0 (3)	N2-Mn1-Cl1	87.1 (2)
O1-Mn1-O1W	92.9 (3)	O1W-Mn1-Cl1	170.3 (2)
O2-Mn1-O1W	87.8 (3)		

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline O1W - H1W1 \cdots O2^{i} \\ O1W - H1W2 \cdots Cl1^{ii} \end{array} $	0.85 (12)	2.02 (12)	2.847 (9)	164 (11)
	0.78 (12)	2.32 (12)	3.102 (7)	171 (11)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, z.

H atoms on carbon were treated as riding, with C-H = 0.96 Å and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$. H atoms on N or O were refined with $U_{\rm iso}({\rm H}) =$ 0.03 Å^2 (0.08 \AA^2 for O) and N-H distances in the range 0.81–0.89 Å (0.78-0.84 Å for O-H). Thee deepest hole is located 0.61 Å from atom C11 and the highest peak is located 0.96 Å from atom C12.

Data collection: SMART (Bruker, 1994); cell refinement: SAINT (Bruker, 1994); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: please provide; software used to prepare material for publication: SHELXL97.

We sincerely acknowledge the support of the National Natural Science Foundation of China and Provincial Natural Foundation of Shanxi.

H atoms treated by a mixture of

independent and constrained

refinement

References

- Asada, H., Fujiwara, M. & Matsushita, T. (2000). Chem. Lett. pp. 772-773.
- Bermejo, M. R., Castineiras, A., Garcia-Monteagudo, J. C. & Rey, M. J. (1996). J. Chem. Soc. Dalton Trans. pp. 2935–2944.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G. & McAuliffe, C. A. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.
- Li, J., Yang, S. M., Zhang, F. X., Tang, Z. X., Shi, Q. Z., Wu, Q. J. & Huang, Z. X. (2000). Chin. J. Inorg. Chem. 16, 84–88.

- Manchanda, R., Brudvig, G. W. & Crabtree, R. H. (1995). Coord. Chem. Rev. 144, 1–38.
- Oki, A. R. & Hodgson, D. J. (1990). Inorg. Chim. Acta, 170, 65-73.
- Panja, A., Shaikh, N., Ali, M., Vojtisek, P. & Banerjee, P. (2003) *Polyhedron*, **22**, 1191–1198.
- Pecoraro, V. L., Baldwin, M. J. & Gelasco, A. (1994). Chem. Rev. 94, 807–826. Ruttinger, W. & Dismukes, C. C. (1997). Chem. Rev. 97, 1–24.
- Sheldrick. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Watkinson, M., Fondo, M., Bermejo, M. R. & Sousa, A. (1999). J. Chem. Soc. Dalton Trans. pp. 31–41.
- Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153-1172.